Art Conservation

Non-destructive elemental analysis on a Japanese sword by micro-XRF with a super large chamber
Swords are made from different materials in different eras in different countries. From an archaeological point of view, elemental analysis provides hints of the origin and the production date of a sword. It also provides hints to identify whether it’s imitation or real.
Non-destructive large area elemental map imaging on the painting “Flower Vase with Thistles” using the XGT-9000SL
Pigments are important clues to the historical background of artworks. This application note introduces elemental map imaging performed on Vincent van Gogh’s oil painting “Flower Vase with Thistles” using the XGT-9000SL. The results reveal that elemental compositions of the pigments used on the painting were different from ones previously reported to have been used by van Gogh. It suggests that this painting was a replica of the artwork.
Pigment analysis on an antique paper painting by micro-XRF with a super large chamber
Identification of pigments is important in the archaeological and art research fields. Some pigments were used during specific times and then were no longer used in later times. Therefore, we can estimate the period when artwork was created through identification of the pigments. Micro-XRF is an effective pre-screening analytical technique to narrow down the candidates of multiple pigments used on a painting, thanks to its non-destructive approach and imaging capability.
The non destructive and in-situ analysis of pigments
Archaeometric analysis of ancient pottery
Archaeometric analysis of ancient pottery in a church
Co-localized microscopy techniques for pyrite mineral spatial characterization
Co-localized microscopy techniques for pyrite mineral spatial characterization
In this study we have chosen to investigate pyrite and its surrounding minerals in order to identify the different mineral phases as well as the chemical variations from micro- to nano-scale. Using the different microscopes instruments and being co-localized allows a comprehensive characterization of the sample and a precise superimposition of all the images.
Characterization of Pyrite Inclusions in Lapis Lazuli Using X-ray Fluorescence Micro-imaging
Characterization of Pyrite Inclusions in Lapis Lazuli Using X-ray Fluorescence Micro-imaging
Lapis lazuli is a deep-blue metamorphic rock used as a semiprecious stone which contains inclusions that can impact its value. Pyrite impurities and major elements distribution are studied with the XGT-9000, HORIBA’s new X-ray microscope.

Pedido de Informação

Você tem alguma dúvida ou solicitação? Utilize este formulário para entrar em contato com nossos especialistas.

* Esses campos são obrigatórios.

Browse Products

nanoGPS navYX
nanoGPS navYX

Collaborative Correlative Microscopy

XGT-9000SL
XGT-9000SL

X-ray Analytical Microscope
with a Super Large Chamber

XGT-9000
XGT-9000

X-ray Analytical Microscope (Micro-XRF)

graphYX
graphYX

Correlate Multiple Modalities with Ease

LabRAM Soleil
LabRAM Soleil

Raman Spectroscope - Automated Imaging Microscope

LabRAM HR Evolution
LabRAM HR Evolution

Confocal Raman Microscope

XploRA™ PLUS
XploRA™ PLUS

MicroRaman Spectrometer - Confocal Raman Microscope

F-CLUE
F-CLUE

Compact Hyperspectral Cathodoluminescence

LabRAM Odyssey
LabRAM Odyssey

Confocal Raman & High-Resolution Spectrometer

Cathodoluminescence - CLUE Series
Cathodoluminescence - CLUE Series

Cathodoluminescence Solutions for Electron Microscopy