Semiconductor Page Heading

流体控制

HORIBA 提供多样化的产品满足流体测量和控制要求。

HORIBA 可为各种制程和研究实验室提供对气体和液体的精确测量和可靠控制。HORIBA 是公认的高性能质量流量计、质量流量控制器、自动压力控制器和液体汽化系统的领先制造商,前述产品在尖端半导体制造行业中被广泛使用。

What is a Mass Flow Controller?

A mass flow controller automatically controls the flow rate of a gas according to a set flow rate sent as an electric signal, without being affected by use conditions or changes in gas pressure.  Flow rates can be roughly classified into two types: volumetric flow and mass flow.  A volumetric flow measurement is affected by ambient temperature and pressure.  To see the true flow, the pressure and temperature conditions need to be pressure conditions, therfore providing much more accurate and stable flow measurement and control.  Our mass flow controllers are used in a wide range of industrial fields as indispensable equipment when accurate control of flow rates is required or an automated production line is built.

Structure and operating principles

These mass flow controllers have a flow rate measurement section that includes a sensor, bypass, flow rate control valve, and special circuitry.
The gas is input from an Inlet joint, and is divided so that it flows over both the flow rate sensor and a bypass. The sensor measures the mass flow rate of the gas, and the flow rate control valve modifies the flow rate so that the difference between the measured flow rate and the flow rate received from the external flow rate setting signal is 0 (zero).
The units feature a loop circuit, so even if there is a secondary pressure change or ambient temperature change that could affect the supply pressure of the introduced gas, the flow rate is instantaneously corrected, which ensures stable flow rate control.

Operating Principle

  1. The gas, which enters from the inlet, first splits to flow past the sensor or through the bypass.
  2. At the sensor, the mass flow rate is detected as a proportional change in temperature and converted by the bridge circuits to an electrical signal.
  3. This signal passes through the amplification and correction circuits, and is output as a linear voltage between 0 to 5V.  At the same time, it is also sent to the comparison control circuits.
  4. The comparison control circuit compares the flow rate setting signal and the acutual flow setting signal from the sensor and sends a difference signal to the valve driving circuit.
  5. The flow rate control valve movers as appropriate to make the difference between the reguired flow set point and flow output signals approach zero.  In other words, the unit controls the flow so that it is always at the set flow rate.

Product characteristic of Digital Mass Flow Controller

The Digital Mass Flow Controller is shown in the diagram above.
These mass flow controllers have a flow rate measurement section that includes a sensor, bypass, flow rate control valve, and special circuitry. A CPU is part of the circuitry, which makes it both multi-functional and highly efficient.
The units feature a loop circuit, so even if there is a secondary pressure change or ambient temperature change that could affect the supply pressure of the introduced gas, the flow rate is instantaneously corrected, which ensures stable flow rate control.

Liquid Mass Flow Control - Measurement Principles

Cooling measurement method

The flow rate sensor in the LF-F/LV-F series of fine mass flow controllers for liquids consists of an electronic cooling element (Peltier element) that is in contact with a capillary tube, as well as several temperature detection elements. When the liquid is flowing, the sensor detects the temperature rise (⊗T) corresponding to the flow rate and displays it as a flow rate. Unlike methods where heat is added, this cooling method enables flow rate measurement of liquids with low boiling points. It also prevents problems with interference due to the influence of secondary discharge (vaporization) and makes accurate flow rate measurements possible.

Structure/Operating principle

The LV-F series of mass flow controllers are similar to the LF-F series of mass flow meters, but also have a piezo actuator valve and an internal comparison control circuit. They compare the flow rate setting signal and the flow rate output signal and automatically control the valve aperture so that the two signals will match. Since they use a feedback control system, there are no flow rate variations as a result of external factors, and, therefore, stable, accurate control is possible. The use of a piezo actuator valve, which is both stable and does not generate heat, as the control valve makes these units ideal for flow control of liquids with low boiling points.

Liquid Source Vaporization Control Systems - Principle of Vaporization

Injection method

The following list covers the major steps involved in vaporizing a liquid source and supplying it to the process chamber.

1. The liquid source's flow rate is measured and the amount of liquid is feedback controlled by the valve.

2. The liquid is instantaneously and completely vaporized.

3. The gas is released without being allowed to condense back into its liquid form.

Vaporization systems that use the injection method sequentially carry out steps 1, 2, and 3 listed above. The VC series units measure the liquid flow of the liquid source using a mass flow meter and do not use a carrier gas.  The MI/MV series units use a mass flow meter for measurement and feature a mass flow controller that introduces a carrier gas into the unit to vaporize the liquid source.

 

  

Gas and liquid mixture method

This is the vaporization method used in the MI/MV series. Since the pressure on the carrier gas is higher at the front of the nozzle inside the injector, it can be heated efficiently. The liquid source and the heated carrier gas are mixed together in the gas/liquid mixing area in the front of the nozzle, and the pressure is reduced as they pass through the nozzle, vaporizing the mixture. Vaporization efficiency is higher than with traditional vaporization methods. When this method is used, larger flows can be generated, and the generation temperature can be reduced.

 

 

D700uF
D700uF

Micro Flow Pressure Insensitive Mass Flow Module

D700T
D700T

Best Performance Pressure Insensitive Mass Flow Module

D700MG
D700MG

高响应压力非敏感质量流量器

D700WR
D700WR

宽范围压敏质量流量计

压差式质量流量控制器 D500
压差式质量流量控制器 D500

压差式质量流量控制器

SEC-Z700S 系列
SEC-Z700S 系列

新型压力补偿质量流量控制器

SEC-Z500X
SEC-Z500X

多量程/多气体数字质量流量控制器

SEC-N100 系列
SEC-N100 系列

数字式质量流量控制器

SEC-E 系列
SEC-E 系列

质量流量控制器

SEC-8000 F/D/E 系列
SEC-8000 F/D/E 系列

高温数字式质量流量控制器

SEC-400 系列
SEC-400 系列

质量流量控制器

UR-Z700 系列
UR-Z700 系列

数字式自动压力调节器

FS-3000
FS-3000

热式气体分流器

EC-5000 系列
EC-5000 系列

排气压力控制器

留言咨询

如您有任何疑问,请在此留下详细需求信息,我们将竭诚为您服务。

* 这些字段为必填项。